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SUMMARY

In order to investigate the deviation of flow swfaces from their
assumed orientation in the usual type of two-dimensional solution, three-
rWnensional,incompressible, nonviscous, absolute irrotational fluid
motion is determined for flow through rotating -al-flow. passages
bounded by straight bhdes of finite spacing and infinite axial length
lying on meridional planes. Solutions are obtained for five passages
with varying blade spacing and hti-tip ratio. The results are presented
in such a manner as to apply for all ratios of axial velocity to passage
tip speed. It is concluded that, for conditions in typical axial-flow
blade rows, the deviation of flow surfaces from their assumed orienta-
tion in two-dimensional solutions is srwdl.

INTRODUCTION
,

A flow surface in the passage between two blades of a compressor
or turbine is generated by the motion through the passage of any fluid
line consisting of the same fluid particles and extending from one
boundary to another in a pkane normal to the -s of rotation. In two-
dimensional analyses of flow in compressors and turbines, the fluid
motion is usually assumed to occur on flow surfaces that are: (1) sur-
faces of revolution about the axis of the turbomachine (blade-to-blade
solutions~ references 1 and 2~ for example) or (2) mean passage surfaces
that are conguent with the mean blade surfaces (hub-to-shroudsolutions,
references 3 and 4, for example). Actually, the flow surfaces deviate
from the orientation assumed for the two-dimensional solutions and, h
the direction of flow, become progressively more tilted and distorted.
This deviation of the flow surfaces from their assumed orientation is
caused by spanwise variations of blade loading and, in rotating blade
rows, by rotation of the fluid particles relative to the passage in a
plane normal to the ads of the blade row. This rotation is reqtied
to maintain the rotational or irrotational character of the absolute
fluid motion.

.
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The deviation
attempt is made to

NACA ‘IN2834

of flow surfaces is considered in reference 5, but no
estimate the magnitude of this phenomenon. An ana- ,

lytical investigationhas therefor; been made at tie NACA Lewis labora-
tory b order to determine the magnitude of this deviation in rotating
axial-flow passages. The axial-flow passages in this investigationare
bounded by straight bkdes of finite spacing and infinite axial length
X@W on meridional (axial-radial)planes. The solutions have been made
for three-dimensional, incompressible,nonviscous, absolute irrotational
fMid motion over a range of blade spacings and hub-tip ratios. These
solutions do not investigate the effect of spanwise distribution of blade s

loading, which was considered of secondary importance.‘ (Note that, as in ~
rectan@_ar elbows with potential flow, urulformspanwise loading has no
effect on the deviation.offlow surfaces.) Likewise, the effects of .
compressibilityhave not been investigatedbecause, as clearly inticated
by the correlation equations in reference 1, the eddy flow, which causes
the flow surfaces to deviate, is little affected by compressibility.
The results are presented in such a manner as to apply to any ratio of
blade-tip speed to tial velocity of the fluid.

METHOD OF SOLUTION

The method of solution, including the relaxation solution of the
clifferential equation of flow and the superposition of solutions, is
developed in this section.

Preliminary Conside~tions

Assumptions. - The absolute flow is assumed to be firotational.
, The fluid is assumed to be nonviscous and inc~ressible. The fluid

motion is three dimensional and is steady relative to the rotating
passage.

Coordinate system and velocity components. - The cylindrical
coordinate system r, @, z is shown in figure 1. (All syibols are
defined in appendix A). The linear coordinates r and z are expressed
as ratios of the blade-tip radius. ‘Ems, for example, the radius r
at the blade tip is unity. The coordinate system is fixed relative to
the passage which rotates about the z-axis in the positive direction
according to the right-hand rule.

The velocity components u, v, w relative to the coordinate system
in the r, 19,z &b?ections, respectively, are also shown in figure 1.
The velocity components and the blade speed are expressed as ratios of
the blade-tip speed. Thus, for exsmple, the blade speed at any radius
is equal to r and the absolute tsmgential velocity componentbecomes
(v+ r).

o
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Type of passage geometry. - The rotating axial-fluw passages in
this investigation are infinitely long. Each passage is bounded by a
hti and cas~ of constant radius, respectively, and by straight blades
of finite spacing and infinite length lying on meridional (axial-radial)
planes. The blade inlet is considered to be at minus infinity in the
z-direction and the blade exit at plus infinity. Under these circum-
stances the flow is uniform in the z-direction at the region investi-
gated (near the origin, z = O) and the blade loading is zero. Thus,
effects of blade loadlng on deviation of the flow surfaces are not inves-
tigated in this report. These effects are considered of secondary
hportance.

Superposition of solutions. - For the passage geometry just
described, the incompressibleflow solution can be separated into two
parts: (~) the rotakg or eddy-flow solution in the rotating passage
with no through flow and (2) the through-flow solution in the station-
ary passage with no eddy flow. The eddy-flow solution does not change
in the z-direction and is therefore two dimensional. The through-flow
solution is a mxlform -al velocity w. Various percentages of the
two solutions can be cotiined by linear supewosition to obtain new
solutions for different ratios of axial velocity to blade-tip speed,
that is, for clifferent values of w.

v
.

Eddy-Flow Solution

The eddy-flow solution is two dimensional and lies in the rO-plane.

Continuity. - A fluid particle on the re-plane is shown in figure 2.
From continuity considerations

A stream function ~ satisfies equation

?
= -v

r

Irrotational absolute motion. - For
the circulation of the absolute velocity
figure 2 is zero, and therefore

o (1)

(1) if defined as’

(2a)

(2b)

irrotational absolute motion,
around the fluid p@iCk in
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which, after stistitution of

a2t

I au _2

++

r3B=

equation (2), becomes

OV+UIW =2”
‘+r&ar2 r2 aez

(3’s)

Equation (3b) is the differential equation of flow that determines the
distribution of W for the eddy-flow solution in the re-plane.

Transfomnation of coordinates. - In order to solve equation (3) by
relaxation methods, it is convenient to transform the r~-plane onto the
~e-plane by means of

f.lnr (4)

from which equation (3b) becomes

Q a2q a2w
p +~=2r2 (5)

Relaxation solution. - Equation (5) is solved by relaxation methods
(references 6 and 7, for example) to satisfy the specified boundary
conditions. For the eddy-fluw solutions, there is no flow through the
passage so that ~ is zero along the hub, shroud, and blade stiaces.
In the ~e-planethese boundaries form a rectangle within which is placed
a grid of equally spaced points. At each of these ~id potits the value
of ~ required to satisfy equation (5) in finite difference form is
determined by relaxation methods. The size of the gid spacing varies
among examples and will be indicated l&er. The values of ~ at the
~id points were relaxed to a unit change in the fifth decimal. The
veloci~ components are obtained from the distribution of V according
to equation (2). The streamlines of the eddy flow in the re-plane are
lines of constant 4.

Combined Solutions

For the eddy-flow solutions on the re-plane, the fluid rotates
relative to the passage walls in a direction opposite to that of the
blade rotation. This fluid motion is the same for all planes normal to
the z-axis. For the through-flaw solution the @al velocity w is
everywhere constant. These two linear solutions can be superposed to
obtain solutions for three-dimensionalflow through rotating -al-flow
passages.

,,
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It is desired to determine the flow surface generated by the “
motion of any fluid line that extends between boundaries in the r&pLane
and always consists of the same fluid particles. This fluid line
rotates with the fluid in the re-plane and the surface that it generates
depends on the velocity w with which it moves in the axial direction
through the passage. Examples of such flow surfaces are shown in fig-
ure 3. The shape of these surfaces can be indicated on the r%plane
alone by plots of the intersections of these surfaces with the rf3-plane
at eqml increments of z. These intersections are the positions of the
fluid lines on the re-planes at these values of z. If, instead of
increments of z, however, fluid lines are plotted on the r&p@e for
increments of the absolute angle a that the passage has rotated about
the z-axis, these fluid-line positions apply for all.values of w. For
a given value of
tion is given by

Thus the results
DOSitions in the

a, the value of z then

.Z=uw

of the codoined solutions

depends on w

are plotted as
re-pl.anefor equal increments of a. and

and this rela-

(6)

fluid-line
these results

Ifig. 4(a), for examile) apply ;or all ratios w of ‘through-flawvelocity
to blade-tip speed. The three-dimensionalflow surfaces in figure 3
correspond to the fluid-line positions shown in figure 4(a) for w
equal to 0.6.

NUMERICAL EXAMIZK
. .,

The results for three-dimensional flow though five ro~t~ ~al-
flow passages are presented in figures 4 to 8. The results are pre-
sented in the re-pkne by streamlines ** of the eddy-flow solution and
by fluld-line positions a of the three-tiensional flow surfaces. The
streamlines are designated by ~*, which is defined as

**=* (7)

where the stiscript rein’refers to the algebraic minimum value of ~
so that @ varies from zero along the boundaries to 1.0 at the petit of
minimum $. The fluid-line positions in the re-plane are indicated for
various values of the-absolute angle a that the passage has rotated
about the z-axis from its initial position (a = O) at which the fluid-
line positions are radial or circumferential lines. In conformity with
reference 5, flow surfaces with Mtial fluid-line positions that are
cticumferential or radial lines are designated S1- or S2-stiacesy

respectively.

.-— —-—— _ —. -——. — ——. .—— --
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Passage configuzations. - The geometry of the five axial-flow
passages investigated is described in table I.

TABLE I - GEOMETRY OF AXIAL-FIOZ PASSAGES

Hti-tip
ratio

rh

1(standard)
II
III
Iv
v

0.70000
.70000
.70000
.50105
.89453

0.17834 10%L3‘ (AO/8) = 0.02229
.08917 50 7’ (A(3/8)= .01115
.35667 20%?6‘ (AO/8) = .04458
.17834 10%5 ‘ (AE3/8)= .02229
.17834 m013 ‘ (Ae/16)= .01115

The results of the standard solution, example I, are compsred with the
results of examples II and III to determine the effect of varying the
blade spacing Ae with constant hti-tip ratio rh. The results of
exsmple I are also compared with examples IV and V to determine the
effect of varytng ~ with Ae constant. The aid spacings used In “
the relaxation solutions are given in the last column of the table.

Standard solution. - Results for the standard solution (example I)
are presented in fi~e 4. In figure 4(a) are shown fluid-line posi-
tions of the central flow surfaces for various values of the angle a.
The central flow surfaces are defined as those s~faces fur which the
fluid 13nes pass through the point of minimum ~, that is, ** = 1.0.
At thiS point, ~llES Of u and v are both zero so that the central
flow surfaces pivot about a straight line in the z-directionthrough
this point.

In figure 4(b) are shown the fluid-line positions of off-center
S1-surfaces for various values of the angle a. For any off-center flow
surface, the envelope of the fluid-line positions for various values of
u is a streamline. This fact is clearly shown by the upper S1-surface
in figure 4(b) which is tangent to the streamline 0.8.

Fluid-1ine positions of off-center S2-surfaces for various values
of a are shown in figure 4(c). Finally, in figure 4(d), are shown
fluid-line positions of the central S1-smface for a wide range of a.
As a increases, the surface becomes pro~essively more distorted because
its velocity in the r&plane along the boundaries near the corners is
low, becoming equal to zero at the corners, whereas the velocities along
most of the other eddy-flow streamlines a~roach a wheel-type distribu-
tion with zero velocityat V* = 1.0. It is concluded that, for large
values of the absolute angle a, the flow surfaces become greatly
distorted.

,
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Solutions for effect of llade spacing. - Examples II and III are
presented in figures 5 and 6. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three blade spacings
AO with the same hub-tip ratio ~. The general appearsmce of the
central S1-surfaces is similar for examples I and 11, and in exsmple III
the S1- and S2-surfaces are similar. Reasons for these simi~ities are
given in DISCUSSION OF RESULTS.

Solutions for effect of hub-tip ratio. - Examples IV and V are
presented in figures 7 and 8. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three hti-tip ratios
rh with the same blade spacing A8. The general appearance of the
central S1-surfaces of examples I and IV is similar, and the S1- and
S2-surfaces of example V are similar to the S2- and S1-surfaces, respec-
tively, of example I. Also, it is noted that the central S1- and S2-
surfaces of examples II and IV are similar in general a~earance. Rea-
sons for these similarities are given in DISCUSSION OF RESULTS.

the

DISCUSSION OF RESULTS” - -

Some of the results presented in figmes 4 to 8 are discussed, and
deviations of the flow surfaces from their initial positions for a

equal to zero in the rO-plane are investigated.

Typical value for u. - The results in figwes 4 to 8 are presented
as fluid-line positions in the re-plane for even increments of G. As
already defined, a is the absolute angle that the -al-flow passage
has rotated about the z-axis, with u equal to zero when the initial
position of the fluid line is a circumferential line (S1-surface) or
ratial line (S2-surface) in the re-plane. This angle a is related to
the geometry and operating conditions of the axial-flow passage by
equation (6). In order to determine a typical value for a, an axial-
flow stage is considered with

550 ft/sec

0.12 ft (1.44 in.)

838 radians/see (8000 rpm)

where the prime superscript indicates dimensional quantities. Equa-
tion (6) becomes

=l.l

,ct=— = 0.183~t

——__ __ ——— . ..— ——. ---.——-— .—. .-
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so that a typical value for a is approximately 0.2. From figures 4 to
8 it is therefore concluded that the deviation of flow surfaces in
typical axial-flow blade rows is not large. This conclusion is further
strengthened if the fluid-lhe position for a equal to zero is con-
sidered to occur halfway through the blade row. Then the msximum
deviation of the surface frmn its position at a equal to zero is
reduced by approximately one half.

For blade rows (not necessarily axial flow) with relatively large
dhensions in the direction of flow, such as radial- and mixed-fluw
impellers, the deviations of the fluw surfaces mustbe large. However,
even these large deviations do not invalidate the two-dimensional solu-
tions completely,because, as shown in reference 8, at many positions
in the passage the velocity components of major 5mportance are much the
same for two- and three-dhensional solutions.

Deviation of flow surfaces. - The deviation of flow surfaces from
their initial orientation, gi.venby fluid-line positions in the re-plane
at a equal zero, can %e’describedby three factors (fig. 9): (1)
displacement, in the re-plane, of the tangent point between the fluid
line and the tangent streamline; (2) rotation, in the re-plane, of the
fluid line about this tangent point; and’(3) distortion or bending of
the fluid he h the re-plame. The displacement of the tangent point
is determinedly its motion in the re-plane along the streamlinewith
which the fluid line is tangtit. This displacement for off-center Sl-
and S2-surfaces is indicated in figures 4(b), 4(c), and 9 and will not
be discussed further. For central flow.surfaces,which will be con-
sidered exclusively hereinafter, the tangent point (center point) does
not move and the displacement is zero.

The rotation of central flow smfaces willbe measuredly the angle
P - PO tichthe ~ent to the fluid line at its center point rotates
in the re-plme from its initial position PO at a equals zero
(fig. 9).’ The angle P is measured clockwise from the radial direction
so that PO is 900 for S1-surfaces and 0° for S2-surfaces.

The distortion of the flow surfaces will be discussed qualitatively.

Rotation of flow surfaces. - The rotation of central flow surfaces
is measuredly the angle p - Pn introduced in the preceding section.
This angle & be
equation has been
can be determined

a%,at

value of —
&2

measured in f~gures 4(a) and 5 to 8. Howe&, an
developed (appendixB) by which the rotation ~ - PO
directly from u and a parameter A, which is the

the center yoint.

— —. —–—— ——
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For central S1-surfaces

and for central S2-surfaces

9

(7a)

so that the rotations of the two types of central fluw surface are
related by

In

so
of

particular, for A equal to 1.0,

(9 - Po)I= (P - Po)2= .

(7C)

(7d)

that the rotation”of both flow surfaces are equal to the rotation a
the passage about the z-axis.

As will be discussed Wter in this se,ction,the ~ter A is
h rh h rh

primarily a function of ~. If ~ is zero> t-t is, if rh is

1.0 and AO is finite, v and %
are zero at the center point and

equation (3a) gives

2,=-2
from which

I

2
A = ;r;

—=-%=2

In rh
Also, if ~ is infinite, that is, if Af3 is zero and rh is less

than 1.0, ~ is zero at the center point so that.

h rh

Thus, the parameter A varies between O and 2.0 as ~ varies

between -m and O. For A equal to O, equations (7a) and (7b) become

.—— — — .
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(7e)

and

Likewise, for A equal to

and

tan(p - P&’ =

2.0, equations

tan(p - $0)1=

tan(f)- 13&’=

The rotation (~ - Po)1 of central

by equations (7a), (7e), and (7g) and is

o (7f)

(7a) and (i%)become

o (7g) z
1%

at (7h)

S~-surfaces has been computed

plotted in figure 10 as a func-
tion-of a for v&iom- values of A. The rotation (~ - 13& of

central S2-surfaces is also given by figure 10 if the curves of constant
A are nuaiberedin reverse order. Thus, discussions relating to the
rotation of central S1-surfaces with parameter A equal to x also
apply to the rotation of central S2-surfaces with A equal to (2 - x).

In figuxe 10 the curve for A equal to zero is asymptotic to I-(/2,
or 1.5708. For this value of A, the passage width is zero (~e s o),
and the central S1-surface cannot rotate more than fi/2 radians. For
A equal to 2.0, the rotation (p - @1 is zero at all values of a.

For this value of A, the passage height is zero (rh = 1.0), and the

central S1-surface cannot rotate. As indicated by equation (7d), a
linear relation exists between (B - PO)~ and a for A equal to 1.0.

As will be shown Later in this section, for this value of A the average
passage width is ap~o-tely equal to the passage height (example III,
fig. 6), and both the central S1- and S2-surfaces rotate at the same
rate as the passage itself, but in the opposite direction. For the
remaining values of A, the curves in figure 10 have inflection points
at (~ - Po)~ equal to ti/2,m, =d SO forth. For values of A less

than 1.0, the rate of change of (~ - Po)1 with a is minimum at

“(~ - ~0)1 eq~l to ~, ~, and so forth, and is maximum at (~ - 130)~

equal to X, 21’c,and so forth. For values of A greater than 1.0, the
reverse is true. In all cases, the rate of change of (~ - PO)1 ~th

a is greatest when the tangent to the fluid line at its center point is ‘
oriented in the direction of minimum Mstance between passage walls and
is least when the tangent is oriented normal to the direction of minimum
distance. This observation is reasonable because, as indicated by the
streamline spacing for examples I to V, the gadient of the velocity

——. — — ——. .
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component normal to the tangent of the fluid line at its center point,
which velocity gradient causes the fluid line to rotate about its cent=
point, is ~umwhen the tangent is oriented in the direction of min-
imum distance between passage walls and is minimum when the tangent is
oriented normal to the direction of ~um distance.

The parameter A, which determines the rotation of the central flow
b rh

surfaces, is primarily a function of the ratio ~. The values of A

for examples I to V have been obtained from the relaxation solutions and
are given in table II together with the values of

TABLE II -VAWESOFPMVMEIERA

I
II
III

Iv

v

T0.314 -2
.134 -4

1.020 -1

--L.240 -+$

1.535 -:

.

b rh b rh
These values of A and ~

7“
are plotted in figure I-1. As

previously discussed, the parameter A is equal to 2 and zero for

k rh
equal to zero and -m, respectively.

A(3
It can be shown analytically

l?lrh
that~h~urve in figure 11 has zero slope for ~ equal to zero.

As—
A8

varies from zero to -m, the passage geometry in the re-plane .

varies from a wide shape with zero height in the r-direction to a tall
in rh

shape with zero width in the 0-d3rection. For ~ equal to -1.0,

the passage geometry is square in the ~0-plane and the av=age passage
width in
(example

The

the same

the rO-plane is approximately equal to the passage height
III, fig. 6). .

b rh

parameter A is a function of ~
Inrh

because passages with

value of ~ have geometrically similar boundaries in the

~0-plane, where the s~iution of equation (5), which solution determines
A, is obtained. The right side of equation (5) indicates, huwever, that
the solution of equation (5), and thmefore the value of A, depends not

h rh
only on the passage shape in the &plane, that is on — but also

Ae ‘
on the corresponding values of r at each value of ~. Thus, the

. —-—— . . ____ — -—
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value of A must also depend on the hub-tip radiUS ratio rh. However,

figure 11 shows that

of rh investigated.

For the range of
(0s a 51.0), figure

rh has only a small effect on A for the range

/

u investigatedby the numerical examples
10 shows that the variation in (j3- PO)1 with a

is similar for O SAS 0.3 (also compare examples 1, II, and–IV in
figs. 4(a), 5, and 7, respectively); and, if the curves of constant A
are nwibered in reverse order, figure 10 indicates the variation in
(p- po)2 ~th a is similar for 1.7 <AS2.O. In both cases the

rotation of the central flow surfaces is similar for the s~ecified range

of A because for

(fig. I-1)are such
tions (a = o) of
exert an important

affected primarily

(1) For values of

hrh .
this range the corresponding values of ~

that the passage walJ_sparallel to the initial posi-
the central flow surfaces are too far removed to
influence on the rotation (~ - Po), which is therefore
by the angle a. It is therefore concluded that:
b rh

AO algebraically less than -2> the rotation of
Uv

central S1-surfaces is about the same for a less than 1.0; and (2) for
hrh

values of ~ algebraically greater than -0.5, the rotation of cen-

tral S2-surfaces is about the same for a less than 1.0.
.

Distortion of~flaw surfaces. - Factors affecting the distortion of
the flow surfaces are evident from figures 4 to 8. In general, a sur-
face becomes distorted if (1) the fluid line that generates the surface
approaches the vicinity of a corner in the re-plane and (2) the center,
or tangency petit of the fluid line, moves closer to one of the passage
boundaries. The relative importance of these factors depends on the
particular passage geometry and the orientation of the flow surface.
From figure 4(b), if the fluid line of the off-center flow surfaces is
initially oriented (a = O) normal to the longer side of the passage
boundary, the first factor is of major importance. From figure 4(c), if
the fluid line of the off-center flow surfaces is initially oriented
parallel to the longer side, the second factor is most important. For
central flow surfaces, only the first factor exists.

It is clearly evident from figure 4(d) that for values of a con-
siderably larger than 1.0 the flow surfaces become greatly distorted.

h rh

Effect of ~. - Table II and fi-&xre11 indicate an approximate
ti rh

correlation of the parameter A with the ratio
7“

Because A is

an importint parameter in the calculation of the rotation (~ - PO) by
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In rh
equation (7), this correlation suggests,that ~ is an hlportant

parameter affecting the shape of the flow surfaces.

lnrh
In table II the value of ~ is nearly the same for ‘examplesII

and IV, and a comparison of these examples in figures 5 and 7 indicates
geat simi@rity in the shape of the flow surfaces. AIEo, in table i%,
b rh M
Ae

— fw example V are of the same general
N ‘or ‘-le 1 ‘d In rh

~“ order of mafglituae* A comparison of the S1- and S2-surfaces of example I

in figure 4(a) with the S2- and S1-sufacesy respective~, of _le V

in figure”8 indicates considerable similarity. It is therefore concluded
k rh

that, for the same value of ~, or its inverse, axial-flow passages

of the type investigatedhave similar shapes of flow surfaces.

a

SUMMARY OF RESUI& AND CONCLUSIONS

Three-dimensional, incaqressible, nokkcous, absoltie irrotational
fluid motion is investigated for flow through rotating axial-flow pas-
sages bounded by straight blades of finite spacing and infinite Wal
length lying on meridional plames. Solutions are obtained for five pas-
sage geometries &scribed by various ratios of the logarithm of the hub-

k rh
tip ratio divided by the blade spacing ~, and the results are

presented in such a mann= as.to apply for all ?@ios of sdal velocity
to passage tip speed.

The solutions we used to determine the deviation of flow surfaces
from their assumed orientation in the usual type of two-dimensional
solution. This deviation is shown by the fluid-line positions (inter-
sections of the flow surfaces tith the re-plane) for equal increments of
the angle a that the passage rotates about the z-axis as the flow
surface deviates from its initial orientation. The deviation is con-
sidered to consist in (1) displacement in the re-plane of the center
point of the fltid line, (2) rotation in the re-plane of the fluid line
about its center point, and (3) distortion of the fluid line in the
re-plane. ‘.

Two types of flow surface are considered: S1- and S2-sWaces
initially oriented along circtierential and radial lines, respectively,
in the r%plane. The surfaces are central flow surfaces if they pass
through the point of zero relative velocity at the ~ssage center in the
re-pl.ane;otherwise, the smf aces are off-center flow surfaces.

!

. . . . . —..——— .—.———.—. —. — —- —___ —
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Some results of the numerical examples are:

lfACATN 2834

1. The central flow surfaces rotate relative to the passage about
a straight -1 line through the point of minimum stream function near
the center of the passage in the re-plane.

2. For any off-center flow surface the envelope of the fluid-line
positions in the rO-plane for various values of a is a streamkLne.

Some conclusions resulting from the numerical examples sre:

1. For values of a corresponding to conditions in typical axial-
flow blade rows, the deviation of flow surfaces is not large.

2. For values of

cent~l S1-surface is
is algebraically less

3. For values of

central”S2-surfaceis

a less than 1.0

abouk the same in
than -2.0.

a less than 1.0

abo;t the same in

is algebraically geater than -0.5.

radian, the rotation of

all passages for which

radtan, the rotation of

all passages for which

4. In general, a flow surface becomes distorted if
Hne that genemtes the surface approaches the vicinity
the rO-plane and (b) the center point of the fluid line
one of the passage boundaries.

5. For values of a considerably greater than 1.0
surfaces become greatly distorted.

in rk

(a) the

the
~rh ,

AO

the
h rh

AO

fluid
of a corner In
moves closer to

radian, the flow

.

6. For the same value of ~, axial-fluw passages of the type

investigated have similar shapes of flow surfaces.

Lewis Flight FropuWion Laboratory
National Advisory Committee for Aeronautics

Cleveland, OhiO, A~t lj 1952
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APPENDIX A

S-YMBOIS

.

,

.

The following symbols are used in this report. All synibolsare
dimensionless, unless otherwise specified. Velocities are expressed as
ratios of the passage-tip speed; distances are expressed as ratios of
the passage-tip radius.

A

r,e,z

s

s

u,V,w

a

P

AO

~ at the center pointParameter, which is the value of
ar2

(** = 1.O) about which the central flow suxfaces rotate,
equation (B3a) of appendix B

cylinhical coordinates relative to rotating passage (fig. 1)

flow surface ~enerated by motion through passage of any fluid
line consisting of the same fluid particles and extenti$lng
from one boundary to another in rO-plme

.

arc length along flow surface in rf3-plane

relative velocity components in r, 0, z directions, respectively,
(fig. 1)

absolute angle that passage has rotated about z-axis from
initial position at which fluid lines for S1- and S2-surfaces
are circumferentialand
rO-plane

angle of tangent to fluid
measured clockwise from

blade spacing in rO-plane

radial lines,’respe;tivel.y,in

line at its center
radial direction

point in rO-plane,

t “ transformed coordinate, equation (4)

+ stream function in M-plane, equation (2)

W* stream function ~ divid.edby $ti, equation (7)

a relative angular velocity of elemental arc ds, of central flow
surface, rotating about point $* = 1.0 in rO-plane, expressed
as ratio of 0’

*1 absolute angular velocity of passage about z-axis, dimensional

.

—- — -- —.—..——
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Slibscripts:

hti (SO that rh iS hub-tip ratio)

Illhinlum.

Mtial position, when a equab

flow surfqce with cticumferential
fluid like b rO-pl.sne

flow surface with radial line for
in r6-pkne

superscript:

1 dimensional quantities

zero

lim for initial

initial position

NACA TN 2834

position of 2
:

of fluid line

__ ——_ .—. —. —
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ROTATION OF

IfQis

APPENDIX B

CENTRAL S1- AND S2-SURFACES ABOUT TBEIR CENTER POII!T

IN rO-PLANE

the relative angular velocity, expressed as a ratio of
the absolute angular velocity of the passage about the z-axis, of an
elemental arc length & rotating about the point V* = 1.0 in the
re-pl.ane,then from figure 12

.

Ms=gdscoi+ zassinfi

where

(Bl)

(Bla)

and

(Bib)

At the point for V* = 1.0, however, u and v are equal to zero and,
because the streamlines are normal to the passage center line,

so that the continuity equation (1) gives

and equation (3a) becomes

From equations (Bl) apd (B2)

or, from equation (2b), .

‘~ = A + 2(1 - Aj Sh2~

(B2a)

(B2b)

(B2c)

(B3)

.—. — . .. ..—. _____ — .— .-—_ _ _
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where

NACA TN 2834

a21y
‘=s

Also, it can be shown from the definition of ~ that

Q%=—

so that, from equation (B3),

(B3a)

f

P

a=- W

A+2(l - A) Sti2~

$0

or

a“ d=+n-’k-+ -tin-’(fwii
For central S1-surfaces,

tmpl=

and
.

tan(f)- %).= - {+44-1

For central S2-surfaces, 130 equals O

and

tan(p Po)2

so that

[- qlmn--

d-2 -A
tsa La (7b)

(7a)

.

—- ..— —.. .
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u /“
$,

Z-axl.s

e

P Direction

/ [
of rotation

Figure 1. - Cylindrical ‘coordinates
components relative to rotating

and velocity
passage.

.

Figure 2. - Fluid particle
in rf3-plane.

,
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DMotim of
rotatian

Figure 3. - Cenlmal~- and~-surfacesforexampleI tith axial veloclty w
equal to 0.6.
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Wceotion of rotatim
Mreatim of rotatim

~BWfFJOO

A@., @/&s

(a) central S1- md S2-~f~eB.

~~$ . ; FIUld-llne ~itiOM Of flti -faaea fm

&.3”

Rub-tip Mtlo, ~, 0.7Ka3J blade 6p8alng,

m, 10 ,, IlinhuB Valua of *, -0. W824.

-Mlrfmoa

A@., e/Ae “

(b) Ofr-oent%r 91-8urfam8.

W. 4. - Cmtirlmd. ?luid-liw raitima of flm

aurfaaea far ax.mple I. w-tip ratio, ~, o.7mo*

bJa&adn8, A@, 10°13 i; ~ Vnlum of t,

. .
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N
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An@, O/AO

(0) OfC-OenberB.purfa0e8.

r&wotim of rotatim

o

‘Fi@lw 4. - Contii-uad. Fluid-lina PMitiMS of flm
eurfaoee Km. ERMP1* I. Hub-tip ratio, ~, 0.71XJOJ

blade qm.ahg, MI, 10°131 J MinimJm value of #,

-O .~524 .

Dlreoticm of rotitim

Angle, e/A9

(d) Matortim of oentm.1 s~-mrfdoe
for whle mqm of a.

?&me 4, - Culoluded.. Fluid-line F-witim@ of flw

mrrfaoen for example 1. Hub-tip ratio, ~, 0.70KJJ

y~~:pins, M, 10% II Mm valu* or *,

N
w
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Direotim of rotation

SQ-8u.rface e.

e

.— -
148

Angle, ,9/Ae

F@xre 5. - Fluid-line poaitiona of central
S1- and S2-surfaces for example II. Sub-
tip ratio, ~, 0.7000; blade spacing, M?,
5°71; minlmm value of V, -0.00157.

.
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Dlreoticm of rotaticm

S.-surface

Figure

Angle, 13/AQ

1

6. - Fluid-llne positione of central S1- and S,-surfaces fti example III. Eub-tlp
ratio, rh, 0.70CQ3 blade spacing, A9, ~-026 t ; n&lmm value of $, -O.OEM.
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S.-surface

26

.

Angle, .9/A@

I?lqu-e7. - pluld-line posltlms of Central S~- and
g2.surfaces for e~le IV. Rub-tip ratio, QJ
0.50105; blade spaoIuK, Ae, 10013’; ~ *ue
of *, -0.00544.

rfaoe
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Direction of rotation

S9-8urfaue

.90’

Angle, .9/Ae

1S1-surface
<E!!

Figure 8. - Fluid-line poaltlwm of oentral S - end S2-etU?faCe8
for example V.

‘“b-tip “’1”’ ?%Zi!’’=’$’ade ‘Wctig’ “10°13tJ minimm value of V, -O.
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Direction of rotation

Fluid-line positions
of S1-surface

a>O

P[ ‘a=o

A

Tangent to fluid
line of sl-smface

& r> ,/

Displacement ●

of tangent
point

P Streamline
G
\ +
e Center

o 0) point

Detail A showing
rotation (P - P())~
at tangent point of
fluid-line fOr
a>O \

‘w

Figure 9. - Definitions of terms used to describe deviation
of flow surfaces from initial orientation in re-plane at
a - 1.0.
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- Parameter / ‘

A / -

— o J
~ {

/ ~ . —

.6 /

1 d

1.2-
— 1.4 / ‘

/

/

/
/

0 1 2 3 4

- Angle a, radians

Figure 10. - Varlatl.onIn rotation (I3- p~ ~ of central S1-mrf aces with angle a.

~ation (7a).
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\

‘h

\ o 0.70003

c1 .89433

\

\

— . — — — o

<)

o -1 -2 -3 -4

2
in rh

Figure xl.. - Variation in pwame &r A With ~ for exemplaa I to V.
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w’ =

. . Figure 12. - Elemental arc & of a fluid line rotating about
yoint at which stream function ~ * = 1.0 in re-pl.ane.
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